skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Wenhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available February 27, 2026
  3. The increasing complexity of semiconductor devices fabricated from wide-bandgap and ultra-wide-bandgap materials demand advanced thermal management solutions to mitigate heat buildup, a major cause of device failure. High thermal conductivity materials are thus becoming crucial for thermal management. Cubic boron arsenide (c-BAs) has emerged as a promising candidate. However, challenges remain in synthesizing high-quality crystals with low defect concentrations, high homogeneous thermal conductivity, and high yields using the conventional chemical vapor transport method. In this study, we report the synthesis of high-yield c-BAs single crystals using the Bridgman method. The crystals exhibit high uniformity, reduced defect densities, and lower carrier concentrations as confirmed through x-ray diffraction, Raman spectroscopy, temperature-dependent photoluminescence, and electrical transport measurements. Our work represents a significant step toward scalable production of high-quality c-BAs for industrial applications, offering a practical solution for improving thermal management in next-generation electronic devices. 
    more » « less
    Free, publicly-accessible full text available February 24, 2026
  4. The capability of effectively moving on complex terrains such as sand and gravel can empower our robots to robustly operate in outdoor environments, and assist with critical tasks such as environment monitoring, search-and-rescue, and supply delivery. Inspired by the Mount Lyell salamander’s ability to curl its body into a loop and effectively roll across sand and gravel, in this study we develop a sand-rolling robot and investigate how its locomotion performance is governed by the shape of its body. We experimentally tested three different body shapes: Hexagon, Quadrilateral, and Triangle. We found that Hexagon and Triangle can achieve a faster rolling speed on sand, but also exhibited more frequent failures of getting stuck in sand. Analysis of the interaction between robot and sand revealed the failure mechanism: the deformation of the sand produced a local “sand incline” underneath robot contact segments, increasing the effective region of supporting polygon (ERSP) and preventing the robot from shifting its center of mass (CoM) outside the ERSP to produce sustainable rolling. Based on this mechanism, a highly-simplified model successfully captured the critical body pitch for each rolling shape to produce sustained rolling on sand, and informed design adaptations that mitigated the locomotion failures and improved robot speed by more than 200%. Our results provide insights into how locomotors can utilize different morphological features to achieve robust rolling motion across deformable substrates. 
    more » « less
  5. Free, publicly-accessible full text available January 29, 2026
  6. Free, publicly-accessible full text available December 1, 2025